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In turbulent structure functions, we separate a nonuniversal part, depending on the most frequent events, and
a universal part, i.e., reduced structure functions. We focus on the universal contribution using only scale
symmetry arguments and an analogy with electricity developed in our companion paper. A conservation law
leads to a general scaling and a method of computation of the reduced structure functions. Around the
infinite-Reynolds-number limit, we propose a perturbation development which is both regular and compatible
with scale symmetry. This linear approximation accounts for a large variety of turbulent flows, from jet to
boundary layer turbulenc§S1063-651X97)12711-9

PACS numbses): 03.40.Gc, 11.36:j, 47.27.Gs, 47.27.Jv

I. INTRODUCTION ated to scale invariance through Noether’'s theorem. At finite

Reynolds number such a scale-independent “trajectory in-

In homogeneous isotropic turbulence, the velocity fieldvariant” could play the same fundamental role as the one

u(x) is random, and a central question is the following: In itsKolmogorov assigned to energy dissipation, using intuitive
statistics, what is universal, and what depends on a speciféimensional consideratior§].

experiment? Motivated by this vision, we tried, in our companion pa-
In the quest for universal quantities, one often extracts th@€r[10], to derive a possible Lagrangian formalism for scale-
longitudinal velocity increments over a distance invariant random systems, in analogy with relativity and
electricity. In the present paper, our aim is now to focus on
7 fully developed hydrodynamical turbulence, still using only
Su,=[U(X+7)—u(xX)].=, 1 symmetry arguments. This means we leave open t_he deter-
=l )~ u00] / @ mination of the exact Lagrangian, which depeadsriori on

the detailed structure of the given flow: geometry, forcing,

and considers its successive moméfisThey vary with the ~ and Reynolds number. There are now growing experimental
scale/, and one defines the scaling exponent of ik indications that turbulent velocity increments follow, if not
moment agl In((|8u,|"))/d In /. If u, was a power law of exactly a log-normal statistid8,3], at least a statistics very
/, this exponent would be a constant; here, we are interesteddose to log-normal: for example, fits of the scaling expo-
in the variation of this local exponent with the scale. nents¢, with a log-Poisson law/,~C(1- ") [11-13, in

In Refs.[2,4,5], we tried to determine a possible universal various recent experimental configurations, are obtained with
behavior for the scaling exponents of the moments of thé@ 8 parameter3=0.95+0.06[14], whereas the log-normal
velocity increments, using symmetry arguments. Inspired bytatistics requireg@=1. For the sake of simplification, in the
the pioneering work of Nottalgs], in Refs.[4,2] we devel- present paper we only consider the case where turbulence is
oped an exponent relativity formalism to derive a relation forlog-normal. Other types of statistics could also be consid-
scaling exponents of successive moments, in the case ofefed, if evidence of subsequent deviations from log-
scale-invariant homogeneous random field. As shown in Refiormality could be experimentally achieved, e.g., in nonho-
[5], this formalism enables a classification of the possiblenogeneous and/or nonisotropic turbulence, or other types of
statistics of a scale-invariant process, in terms of topologica$ystems(see the Appendix
guantities, namely, the value of the minimal and maximal
multifractal exponents. Il. DETERMINATION OF STRUCTURE FUNCTIONS

Can we also use scale symmetry to constrain the variation
of the structure functions with scales? That is, having already
focused on the link between successive moments, can we For simplicity, we focus on the case of a positive fipddl
now turn to the link between different scales? Dubr(if¢  We thus consider only absolute values of the velocity incre-
began it, using a linear amplitude equation. However, symments|du,|. For reasons which will appear later in the par-
metry allows more general, nonlinear equations, via Ladticularly clear shape of Eq§4) and(5), we now consider the
grangian dynamics. Castaifg] thoroughly discussed what quantity 5u9 defined as an average over the logarithm, as
would happen if turbulence was governed by a Lagrangiarfollows:
formalism, whatever the precise choice of any Lagrangian: in
particular, there would exist a conserved quarftyassoci- In(8u2)=(In|8u ). @

A. Notations and analogy
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Physically,5u® characterizes the most probable velocity in- B. Electric field and breaking of symmetries

crement. Ifsu)~/“o, it provides a linear contributionA In the case of scale-invariant processes, we explained why
to the scaling exponents of theh moment of the velocity the Lagrangian dynamics should depend on only one quan-
increments. Of course, if the turbulence is purely log-normaliity E [see Eq(7)] below. It is a(purely forma) analog of an
Ay=0. Most intermittency models, however, usg+0. For  electric field driving a charged particle with a coupling con-
example, the Kolmogorov 1941 and 1962 theories correstante/m. Symmetry arguments are thus a source of inspi-
spond toA,= 3. This value can be traced back to the famousration for new model even, as in the log-normal case, when
Kolmogorov refined similarity hypothesis, linking statistics constraints are less sevelg7]. In a system forced by an
of velocity increments and energy transfers, and which is @rbitrary externalE, two basic symmetries can be broken:
phenomenological generalization of the Kolmogolaw  the T-translation symmetry, and/or thetranslation symme-
(20). Clearly, su? is a nonuniversal quantity, which depends try. In turbulence, as in any physical experiment, finite size
on the particular size and set-up of a given experiment. Inmposes upper and lower cutoffs, i.e., extreme limits on the
Sec. IV B we show how the Kolmogorod/law can be used scale which break th&-translation symmetry, i.e., the scale
to obtain the scale dependencedf? , once the log-normal symmetry. By contrast, th¥-translation symmetry, i.e., the
part has been determined. invariance of the physical laws with respect to changes of
For the time being, we shall set aside the problem ofamplitude of therelative velocity fluctuations, is associated
finding the exact shape a@fu®, and concentrate on the log- with the concept of a “scale-invariant cascade of energy.”
normal part of the processes by considering reduced structuikhis is in the spirit of Kolmogoro\y9] or Castaind 8], and

functions of ordem: implies that there is a conserved quantity along the scale, the
generalized impulsiofP, derived in Ref[10] and associated
— {]su ™) with this X-translation symmetry preserved in turbulence.
Sn(/)= W. (3 We show below that this conservation gives rise to a prop-

erty named general scalind5].

For that purpose, we introduce the log coordinates C. Dynamics

d InS,(/) We wish to know how the reduced structure function of
Xn(T)= —dn ordern varies with the scale. In our analogy, this amounts to
determining the log coordina®é,,. This is governed by the
equations
daT - aE(T)y
HereL is an arbitrary scale of reference; e.g., without loss of
generality, we can take as the Kolmogorov scale so that dX dx.
scales withT>0 are representative of the inertial range, d—_l_”zaE(T)+ drjl' L (7)

while scales withT<O trace the dissipative scales. These
notations K, ,T) are not innocent, and the scaling exponent . y N )
of a process relative to another one is noted in analogy witfiiere, E is the analog of an “electric field,” and describes

a velocity: the deviations with respect to exact scale symmeteg Sec.
lll). @ is a coupling constant, describing the reaction of the
dX turbulent flow to the scale symmetry-breaking tefsThe
xnzd—_l_”_ (5)  first equation is the Euler-Lagrange equation Xgrwritten

in a fixed reference frame. The second is the same equation
written in an accelerated frame of refererisee Sec. Il A,

In our companion papef10], we discussed at length the jn which the second term on the right-hand side accounts for
constraints set by scale symmetry on scaling exponentshe inertial force. By an immediate recurrence, one therefore
however, if the reduced velocity incremengi |/ su® have  obtains the equation of evolution for any

a log-normal statistics, the formalism applying to log coor-
dinates are particularly simp[d.6]:

Xn
aT =naE(T). (8
X'=X-=VT,
T—T ©) The quantityX,, is known once three quantities are given.

(i) Its coupling constanha.
. _ (ii) Its initial values ofX, andX,, at, say,T=0. The initial
X'=X=V. value of X,, is notedX,,(0). It contributes via a prefactor
J0Xp(0)dp to the structure function, and is usually fixed by
The nth log coordinateX’ = X,, can then be obtained as the the large-scale injection mechanism. Similarily, we note that
transform of the first log coordinaté= X, i|"1 an accelerated X (0)=nX,(0), theinitial value of X,,, is also fixed by the
reference frame moving at the veloci=X,,_ . injection mechanism, i.e., the experimentalist.



56 ANALOGY BETWEEN SCALE ... . 1. ... 6437

(i) The electric fieldE itself. This cannot be derived In a given experiment, physical conditions select the shape
from mere symmetry considerations, and should be eithesf J, and then the shape of the structure functions via Eq.
determined from experiments, or computed using anothef12). The major challenge is now to relaleandE to physi-
systematic theory. However, as we now show, an interestingal quantities characterizing an experiment, i.e., to find a
conclusion can be reached regardless of the specific shape @bsure relation complementing Maxwell's EG.3).

E. In the case wher& translation symmetry holdg§ andJ
are functions ofT only. Thus the theorem of implicit func-
D. General scaling tions implies that one can writd as a function ofE, i.e.,
Let us consider relatiof8). Using the initial conditions J=J(E). In a perfectly scale i.nvariant system, i.e., in infinite
and theX independence d, it can be integrated into: Reynolds number turbulenkeX; is constant, andt is zero.
In the vicinity of the inertial range, or when the Reynolds
Xn—Xn(0)=n[X;—X4(0)]. (9  number Re is large enough, the system is sufficiently close to

the scale-invariant situation, ariel is small. Thus one can

Integrating Eq(9) with respect ta yields a relation between expandJ as a function of the paramet&r, a standard pro-

reduced structure functions of orderand 1: cedure in electricity18]. This expansion is a perturbative

In

=n2In(

; development around the Rec limit.
M Sl(/))_ (10) Usually, in this Re=cc limit, the quantity which is devel-
Sn(7) Sy(7) oped is the structure function, or the scaling exponents: in
Such a result has an interesting consequence: the usual stry case itis a_development of the solutions. But b(;{mdary
ture functions(|su,|") obey a general scaling extending condltl_ons %nT ('.'e];.’ upper z;nd.lé)wei.r ClétOffS olr_1 the S(;”;e
throughout the whole range of scale under the form are rejected at in _|n|ty In t. € i}deaize R?O imit, while
they are necessarily finite in a real, experiment at finite Re.
( (|8u,|m ) n2—3n ( (| 8u,|P) ) This implie_s that the classical m_ethod suffers _fro_m two Qraw-
In ' = In . (1)  backs:(i) since boundary conditions are qualitatively differ-
(|du ™) p?=3p \(|u [P ent, the development in 1/Re is generally singular at 1/Re
. . =0; and(ii) the solution found at finite Re has no reason to
Property(11) was already experimentally observed in _turbu-be the solution of a scale-symmetric equation.
lence by _B_enze_t al. [15]. It was _named “general scaling” Alternatively, we develop the equation itself instead of
because it is valid from the injection scale down to the small—the solution. In that way we are insensitive to the precise
est scale resolved into the system, and thus generalizes tﬂ?cation of any precise scale which could appear, whether
s_elf—similar properties of the structure _functions !n the iner'cutoffs or crossovers. We do not have to assmpmio;i the
tial range. Here we have shown that it stemg dweptly frc.’mexistence of an inertial range, of a Kolmogorov length, or of
conservation along the scales of the generahze_d 'mp“'s'o% large ratio between largest and smallest accessible scales.
in the log-normal case. We do not actually know if this prop-By construction, our development {# regular at 1/Re0
erty still holds for statistics other than log-normal. Checkingand (ii) compatiBIe with symmetry requirements. Morec;ver
this r_equires a noqtrivial .“ge.neral relativity_” type of com- e do not have yet to specify the precise functional deperil—
pqtatlon; see th'e discussion in our companion paper. Even ence of our equations in 1/Re; this will be discussed below.
this were not rigorously true, one expects to see @q)
hold only approximatively with a slightly different constant,
if the turbulence is nearly log-normal. In any case, the gen- B. Ohmic case
eral scaling property provides a significant simplification of o _ )
the determination of the reduced structure functions, because When E s identically zero,J is also zero, as a conse-
only the shape 08,(/) is needed. Below we show how to guence of Eq(13). Thus we now consider the leading term
compute this in a simple case.

J=cE. (14)
IIl. DETERMINATION OF S;()
This is the linear, or “Ohmic,” case, ana is the analog of
a conductivity. In electricity, different material possess dif-
The general scaling propert§1) means that variations of ferent (or even nonlinearconductivities: similarly, we can
the reduced structure functions are completely determined bgxpect different turbulent flow to be characterized by differ-
the variations ofX; in a fixed reference frame. These varia- €nt “conductivities,” and to belong to different classes of

A. Basic equations

tions can be found by solving the equations solutions, possibly not even linear. Of course, nothing for-
bids nonlinear corrections to E¢L4). But we will see that
dX,(T) this dominant linear physics is rich enough, and is probably
g7~ «E(M. (12 representative of a wide variety of high-Re turbulent flows.

The system of equationd2)—(14) is closed. We have to

The electric field itself is linked to the curredt via the introduce two integration constan&,=E(0) and X;(0)
Maxwell equation10] which will lead the discussion. Resolution is simple:

JE
—=-J. (13

aT E(T)=Eqe 7T, (15)
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TABLE I. Fits of various turbulent configurations following the procedure described in the text. The three
parameters are, respectively, u, and aEqy /o, except in the case of stretched exponential where they are
=0, X,(0), and aEy/2. R, is the Reynolds number based on the Taylor microsdlés the pseudo-
Reynolds number defined as the ratio of the integral scale to the Kolmogorov scale. References of data: wind
tunnel[22], turbulence in heliuni23], jet turbulencd 24], turbulence behind a cylind¢®5], and numerical
simulation[26].

Experiment N R Solution First parameter Second parameter Third parameter
wind tunnel 2500 40000 0.820.04 0.76:0.02 —17.8-0.9
Helium 2313 12157 0.780.06 0.86-0.02 —15.4+1.7

Jet 800 1250 stretched exp. 0-16.01 0 —9.93+0.13
Behind cylinder 470 714  degenerate 0 B3¥14 —0.18+0.04
Simulation 335 85 0.560.04 0.43£0.05 —9.75+0.1

D. Physical interpretation

. . aEO —oT
Xao(M=Xy(O)+ == (1=e 7, Clearly, the idealized case of an infinite Reynolds num-

ber, where structure functions are exact power laws of the
scale, must be identified with=0. However, that does not
: aBy set any constraints am. Fits to experimental dat@ee Table
Xo(T) = X4(0)=X,(0)T+ 7(e —1+oT). I) indicate low values ofr. This is compatible with physical
[8] and symmetry[7] arguments, which suggest that the
asymptotic behavior toward this idealized limit is of the
Let us now discuss this solution of the Ohmic equationsishapes~ 1/In(Re). This would mean that we must identify
remember that it is expressed in log variables. Sed4dor  the inertial range with the range> o1, and take the triple
their definition. limit where o~ %, E,, and the size of accessible scale range
tends together to zero. If this were true, the dissipative range
would have a width of order@ 1.
In the particular case where the expongrt 0, we obtain
First of all, we want to link this solution with the usual an especially interesting solution:
experimental observation of an “inertial range,” i.e., a range
of scales where structure functions are approximately power aBy _ ;
laws of the scale. In our log variables, this is an intervar of X1(T) =Xy (0)=—-(e" 7" =1). 17
whereX is linear inT. Does it exist at all? 7
The answer is of course yes. On the right-hand side of E
(150, terms linear inT dominate higher-order terms if
e “T|<1 or|oT|<1. Thus there are two points in our dis-
cussion, and two special cases are examined.
(i) As long agT|<|o Y|, Eq. (150 writes X;(T) — X4(0)
~X1(0)T up to T2 terms. Wheny tends to zero, this range
widens at the expense of the next one. Exactly wher0,

C. Ohmic solution

01't is a “stretched exponential” when expressed in real vari-
ables/,S:

(/19" "-1

Sn(#)=Sn(7) exp nzanTl- (18

E=E, is constant, and the solution is simply This, then, is exactly the solution proposed in R&D] on
£ the basis of experimental results. This solution was also de-
X1(T)=X4(0)=X,(0) T+ 25012 (16)  rved using a Lagrangian approach based on scale-invariance
2 symmetry by Castaing8], and using a normal form ap-

proach by Dubrulld7]. This solution is a true exponential if

_ . . . 1
Such a solution was also found using a normal form ap? =1. and becomes a power law in the linoit *, Eo—0. It

proach by Dubrullg7]. Only whenE is strictly zero does 'S @ generic solution of the scale-symmetric equation, and
this solution yield an exact power law. thus has a similar mathematical role, when the accessible

(i) There is a well distinct linear range, wite~ 7| <1 scale range is finite, as the celebrated power law plays when

at large scales, i.eT>o 1 if o is positive[19]. Upwards, cutoffs are rejected at infinity.

the inertial range extends up to the “initial condition:” the

upper cutoff, usually the scale at which the experimentalist E. Local scale covariance

Injects energy. We see in EGL5h) that the corresponding This interpretation becomes more exciting in the light of

exponent isu=X,;(0)+aEq/o for the reduced structure |ocal symmetry requirements. As first discussed by Pocheau

function of order 1, anch®u for ordern. [21], local scale symmetry requires an invariance of the
Wheno increases, this range widens at the expense of thetructure function by arbitrary changes of scale resolution.

preceding one. In the limitr— o, Egs.(15) reduce toE=0  pubrulle[7] pointed out that this amounts to symmetry un-

and X, = const, which is an exact power law. der the transformation
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T—aT, In(R)—a In(R), parameters with the Reynolds number in a given configura-
tion.
In {(Su,)"y—a In{(Su,)™), (19

. . , ) B. Computation of éu®
wherea is a positive real number andRs=In(/y/7) is a

pseudo-Reynolds number, defined via the ratio of the injec- 10 compute the complete structure functions, one needs
tion scale/, to the Kolmogorov scale;. This symmetry the behavior of thoe nonuniversal part_, namely, the “most
imposes thaiX, /In(R) is a function of T/In(R) only. In the ~ Probable” eventsu, . We can use an idea of Benet al.
Ohmic case, this is only possible provided1/In(R), «E, 28] and use the so-called “Kolmogoroy law” derived

> 1/In(R), andX,(0) is independent oR from the Navier-Stokes equation, wherés the energy dis-
When this is satisfied, the stretched exponefiajs.(17) sipation rate and is the viscosity,
and (18)] tends smoothly toward the perfect self-similar ((8u,))3) = —Lte/+6v3,{(6u,)?), (20)

R= solution, as is often discussed in literature devoted to

turbulence theory. However, surprisingly, the scaling expoand the relation derived from the log-normal statistics,
nents do not tend toward their Kolmogorov expression

£,=n/3. SinceX,(0)=—aE,y/o keeps its finite value, the <|5u/|”)=(5u9)”e”2><1+fn, (21
log-normal character subsists in the limit of infinite Reynolds
number. wheref,, is a scale independent integration constant. Equa-

In the more general cagéb), however, it remains pos- tions(20) and(21) deal, respectively, with algebraic and ab-
sible to tend continuously toward the Kolmogorov solution if solute values structure functions, which for oddare of

and only ifX;(0)=0 ando andaE, tend together to zero to course different. It is not clear in general whether they have

the same order in Reynolds number. the same behavior. For instance, Stolovitzky and Sreenivasan
[29] showed differences at large However, it seems that,
IV. ANALYSIS OF TURBULENT DATA for n=3, both structure functions behave almost identically,
up to a proportional constant. This has been checked, e.g.,
A. Fitting experimental data experimentally in three-dimensionaBBD) turbulence by

To investigate the domain of validity of the ohmic ap- Benzi, Ciliberto, and Chavarrigg0], and numerically in 2D
proximation, we computed the functioy(T) in various tur-  turbulence by Babiano, Dubrulle, and Fri®1]. To com-
bulent configurations, at various Reynolds numbers. The folPute du? from Eq.(20), we then only need the value of the
lowing procedure was used. proportionality constant betwee((du,)3) and (|su,|®),

(i) Check that the general scaliigjl) holds. which can be computed experimentally.

(i) In case it holds, compute the flatness function
F=In((éu})/(8u%)?). Because of the general scaling prop- V. CONCLUSION

erty, this function is just eight times the functiofy(T). . .
y J d oa(T) In the present work, we used the idea that the behavior of

as (tI;:()e E)ig?i?)nawlr?egrds ?r?(lgé)tyg 'fnaL,i f_]e inertial range the s'tructure functions could be divided into two distinct
] _ i . parts: a nonuniversal part, depending on the shape of the
(iv) Find the local scaling exponent=g dF/dT at  most probable events, and a universal part, characterized by
T=T;. reduced structure functions. Previous pafédss] classified
(v) ComputeF/8u, a normalized version oK; which  the possible variations of the scaling exponent withdtuer
facilitates comparisons between different configurations.  of the momentThis classification covers the set of infinitely
(vi) Fit the obtained result by the Ohmic soluti¢h5)  divisible laws, and includes as special cases the log-normal
using three parameters; u=X;(0)+ aEq /o, andaEqy/o?. model [9,8], the phenomenological model of She-Leveque
(vi) If the fitted value ofu or o is much smaller than 1, [11], the thermodynamical model of Castaifig?], the 8
another fit is performed setting this parameter to zero, andhodel[33], and the Kolmogorov solutiofo)].
refitting the two other parameters via the stretched exponen- Recent experimental results seem to indicate that turbu-

tial (17) or the degeneratél6) solution. lence is characterized by log normid], or very near log-
(vii) Keep the solution which yields a better fit to the datanormal [14], statistics. Therefore, in the present paper, de-
(according to ay? tes). voted to the variation of the scaling exponents withsbale

This procedure was applied to the five different sets ofwe apply our unifying formalism only on this log-normal
data made available to us through the courtesy of their austatistics. Our conclusions can be summarized as follows:
thors. The general scaling property was found to hold in all (i) The nonuniversal part can be set aside as a first step
five sets. Results of the fits are displayed in Table | and Fig(while the universal part is determinedhen finally com-

1. In this preliminary investigation, we can make at least twoputed from the Kolmogoro¥ law.

comments: First, the Ohmic approximation can be used to (ii) We have tried to determine the universal contribution
describe a large variety of turbulent configurations. Secondysing only symmetry arguments, and a formalism with the
the parameters entering into the Ohmic solution seem to desame symmetry as electricitgec. 1l B and the Appendjx

pend on the turbulent configuration and/or the pseudo- (iii) In particular, the general scaling of the reduced struc-
Reynolds number. They could then be used to “classify” ture functions observed in turbulence by Beetzal.[15] can
different turbulent flows. A more detailed exploration of this be explained by the conservation along the scale of a general
classification is in preparatidi27], studying variations of the impulsion (Secs. || D and Il §. This conservation law is
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FIG. 1. Comparison between the functi®i(T) computed from real datéilled circles and a fit(dotted ling to an Ohmic solution
obtained using the procedure described in the t¥xt.is the logarithm of a reduceadimensioned structure function, and is a
nondimensional log scale, defined as the logarithm of the s€¢alwided by the Kolmogorov scal®e. Our most general solutiofi50) fits
well data of turbulence in a wind tunn@), courtesy of Y. Gagne; in a helium tank with counter-rotating cylindeyscourtesy of F. Belin,
P. Tabeling, and H. Willaime; and in numerical simulations of Navier-Stokes equations via spectral fogtcodrtesy of M. Meneguzzi.
The “stretched exponential” solutiofil7) provides the best fit to data of a turbulent {dj, courtesy of S. Ciliberto. The “degenerate”
solution(16), i.e., with a zero “conductivity” o, provides the best fit to data of turbulence behind a cyliidgrcourtesy of S. Ciliberto.

associated with the scale symmetry of amplitude fluctua- (vi) Solutions of these scale-invariant equations, but with
tions. It therefore can be seen as a generalization of the effinite boundary conditions, play the same generic role as
ergy conservation which is the central hypothesis of classicgbower laws do for boundary conditions rejected at infinity.
phenomenological theories derived from the KolmogorovAs an example, a solution is explicitly computed in the linear
1941 theonyf9]. (or “ Ohmic”) closure(Sec. Ill B): we find a stretched ex-
(iv) In such case, the reduced structure functions depengonential with[Eq. (150)] or without[Eg. (18)] a power-law
only on one function of the scale. This function could in prefactor.
principle be computed; the pertinent shape of the equations is (vii) The corresponding solutions potentially describe a
established in Sec. Il A. large variety of turbulent flows, from numerical simulation to
(v) Section Il A and Eq(14) explain the only possibility wind tunnel turbulence, including flow past a cylinder, jet
of establishing scale-symmetric equations through a regulaurbulence, or turbulence in helium. Whether other types of
perturbation development around the limit of infinite Rey-turbulence also follow the Ohmic behavior is an open ques-
nolds number. tion.
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There are an energy and a generalized impulsion associ-
ated to this Lagrangian:

E= _axq)_(?CTQ‘l'(?xA. (AZ)

APPENDIX: POSSIBLE LAGRANGIAN
IN THE LOG-POISSON CASE

: : _ P=3LlIoX=TMC+ed/C,
This appendix uses the results and notations of our com- (A3)

panion paper to determine the possible shapes of Lagrangian
formalisms compatible with scale-symmetry requirements.
In the present paper, we developed only the simplest case,

namely, the log-normal statistics. However, our formalismWhenever the symmetry by translation aloXgholds, one
applies equally well to other statistics. In this appendix, we.,,, sey =0 in Egs.(A2) and(A3). The generalized impul-
examine the case of log-Poisson statisfiZk sion P is conserved along the scales

In this case the large-scale—small-scale symmetry break-
ing parameterA =1, and there is only one codimension of dtP=0, (A4)
the most intermittent structure, which is finite and equal to
C_=C/2. The similarity factor ig€"(X)=(1—X/C_) Y2 A
particle motion is determined by the Lagrangian

+e[Dd—A].

X
-rmc?1-2
£ FMC[l c

i.e., the dynamics is equivalently given by the Euler-
Lagrange equation

dl'(X) d(P—ed/C
M C2 c (X) _d( )

X
£=—F(X)+eA—e<b<1—E). (A1) dT dT

=ekE, (A5)

. . _ . which is more simply written as
This is an analog of electromagnetism reduced to a bidimen-

sional space-timeT(,X), i.e., where only a scalar electric dI'=caE dT.
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