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Analogy between scale symmetry and relativistic mechanics. II. Electric analog of turbulence
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In turbulent structure functions, we separate a nonuniversal part, depending on the most frequent events, and
a universal part, i.e., reduced structure functions. We focus on the universal contribution using only scale
symmetry arguments and an analogy with electricity developed in our companion paper. A conservation law
leads to a general scaling and a method of computation of the reduced structure functions. Around the
infinite-Reynolds-number limit, we propose a perturbation development which is both regular and compatible
with scale symmetry. This linear approximation accounts for a large variety of turbulent flows, from jet to
boundary layer turbulence.@S1063-651X~97!12711-8#

PACS number~s!: 03.40.Gc, 11.30.2j, 47.27.Gs, 47.27.Jv
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I. INTRODUCTION

In homogeneous isotropic turbulence, the velocity fie
uW (xW ) is random, and a central question is the following: In
statistics, what is universal, and what depends on a spe
experiment?

In the quest for universal quantities, one often extracts
longitudinal velocity increments over a distancel ,

dul 5@uW ~xW1lW !2uW ~xW !#.
lW

l
, ~1!

and considers its successive moments@1#. They vary with the
scale l , and one defines the scaling exponent of thenth
moment asd ln(^udul un&)/d ln l . If dul was a power law of
l , this exponent would be a constant; here, we are intere
in the variation of this local exponent with the scale.

In Refs.@2,4,5#, we tried to determine a possible univers
behavior for the scaling exponents of the moments of
velocity increments, using symmetry arguments. Inspired
the pioneering work of Nottale@6#, in Refs.@4,2# we devel-
oped an exponent relativity formalism to derive a relation
scaling exponents of successive moments, in the case
scale-invariant homogeneous random field. As shown in R
@5#, this formalism enables a classification of the possi
statistics of a scale-invariant process, in terms of topolog
quantities, namely, the value of the minimal and maxim
multifractal exponents.

Can we also use scale symmetry to constrain the varia
of the structure functions with scales? That is, having alre
focused on the link between successive moments, can
now turn to the link between different scales? Dubrulle@7#
began it, using a linear amplitude equation. However, sy
metry allows more general, nonlinear equations, via
grangian dynamics. Castaing@8# thoroughly discussed wha
would happen if turbulence was governed by a Lagrang
formalism, whatever the precise choice of any Lagrangian
particular, there would exist a conserved quantityP, associ-
561063-651X/97/56~6!/6435~8!/$10.00
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ated to scale invariance through Noether’s theorem. At fin
Reynolds number such a scale-independent ‘‘trajectory
variant’’ could play the same fundamental role as the o
Kolmogorov assigned to energy dissipation, using intuit
dimensional considerations@9#.

Motivated by this vision, we tried, in our companion p
per@10#, to derive a possible Lagrangian formalism for sca
invariant random systems, in analogy with relativity a
electricity. In the present paper, our aim is now to focus
fully developed hydrodynamical turbulence, still using on
symmetry arguments. This means we leave open the de
mination of the exact Lagrangian, which dependsa priori on
the detailed structure of the given flow: geometry, forcin
and Reynolds number. There are now growing experime
indications that turbulent velocity increments follow, if no
exactly a log-normal statistics@8,3#, at least a statistics very
close to log-normal: for example, fits of the scaling exp
nentszn with a log-Poisson lawzn;C(12bn) @11–13#, in
various recent experimental configurations, are obtained w
a b parameterb50.9560.06 @14#, whereas the log-norma
statistics requiresb51. For the sake of simplification, in th
present paper we only consider the case where turbulen
log-normal. Other types of statistics could also be cons
ered, if evidence of subsequent deviations from lo
normality could be experimentally achieved, e.g., in nonh
mogeneous and/or nonisotropic turbulence, or other type
systems~see the Appendix!.

II. DETERMINATION OF STRUCTURE FUNCTIONS

A. Notations and analogy

For simplicity, we focus on the case of a positive field@4#.
We thus consider only absolute values of the velocity inc
mentsudul u. For reasons which will appear later in the pa
ticularly clear shape of Eqs.~4! and~5!, we now consider the
quantity dul

0 defined as an average over the logarithm,
follows:

ln~dul
0 ![^ lnudul u&. ~2!
6435 © 1997 The American Physical Society
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6436 56B. DUBRULLE AND F. GRANER
Physically,dul
0 characterizes the most probable velocity

crement. Ifdul
0 ;l D0, it provides a linear contributionnD0

to the scaling exponents of thenth moment of the velocity
increments. Of course, if the turbulence is purely log-norm
D050. Most intermittency models, however, useD0Þ0. For
example, the Kolmogorov 1941 and 1962 theories co
spond toD05 1

3. This value can be traced back to the famo
Kolmogorov refined similarity hypothesis, linking statistic
of velocity increments and energy transfers, and which
phenomenological generalization of the Kolmogorov4

5 law
~20!. Clearly,dul

0 is a nonuniversal quantity, which depen
on the particular size and set-up of a given experiment
Sec. IV B we show how the Kolmogorov45 law can be used
to obtain the scale dependence ofdul

0 , once the log-norma
part has been determined.

For the time being, we shall set aside the problem
finding the exact shape ofdul

0 , and concentrate on the log
normal part of the processes by considering reduced struc
functions of ordern:

Sn~ l !5
^udul un&

~dul
0 !n

. ~3!

For that purpose, we introduce the log coordinates

Xn~T!5
d lnSn~ l !

dn
,

T5 ln S l

L D . ~4!

HereL is an arbitrary scale of reference; e.g., without loss
generality, we can takeL as the Kolmogorov scaleh so that
scales withT.0 are representative of the inertial rang
while scales withT,0 trace the dissipative scales. The
notations (Xn ,T) are not innocent, and the scaling expone
of a process relative to another one is noted in analogy w
a velocity:

Ẋn5
dXn

dT
. ~5!

In our companion paper@10#, we discussed at length th
constraints set by scale symmetry on scaling expone
however, if the reduced velocity incrementsudul u/dul

0 have
a log-normal statistics, the formalism applying to log coo
dinates are particularly simple@16#:

X85X2VT,

T85T, ~6!

Ẋ85Ẋ2V.

The nth log coordinateX85Xn can then be obtained as th
transform of the first log coordinateX5X1 in an accelerated
reference frame moving at the velocityV5Ẋn21.
l,
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B. Electric field and breaking of symmetries

In the case of scale-invariant processes, we explained
the Lagrangian dynamics should depend on only one qu
tity E @see Eq.~7!# below. It is a~purely formal! analog of an
electric field driving a charged particle with a coupling co
stante/m. Symmetry arguments are thus a source of ins
ration for new model even, as in the log-normal case, wh
constraints are less severe@17#. In a system forced by an
arbitrary externalE, two basic symmetries can be broke
theT-translation symmetry, and/or theX-translation symme-
try. In turbulence, as in any physical experiment, finite s
imposes upper and lower cutoffs, i.e., extreme limits on
scale which break theT-translation symmetry, i.e., the sca
symmetry. By contrast, theX-translation symmetry, i.e., the
invariance of the physical laws with respect to changes
amplitude of therelative velocity fluctuations, is associate
with the concept of a ‘‘scale-invariant cascade of energy
This is in the spirit of Kolmogorov@9# or Castaing@8#, and
implies that there is a conserved quantity along the scale,
generalized impulsionP, derived in Ref.@10# and associated
with this X-translation symmetry preserved in turbulenc
We show below that this conservation gives rise to a pr
erty named general scaling@15#.

C. Dynamics

We wish to know how the reduced structure function
ordern varies with the scale. In our analogy, this amounts
determining the log coordinateXn . This is governed by the
equations

dẊ1

dT
5aE~T!,

dẊn

dT
5aE~T!1

dẊn21

dT
. ~7!

Here, E is the analog of an ‘‘electric field,’’ and describe
the deviations with respect to exact scale symmetry~see Sec.
III !. a is a coupling constant, describing the reaction of t
turbulent flow to the scale symmetry-breaking termsE. The
first equation is the Euler-Lagrange equation forX1 written
in a fixed reference frame. The second is the same equa
written in an accelerated frame of reference~see Sec. II A!,
in which the second term on the right-hand side accounts
the inertial force. By an immediate recurrence, one theref
obtains the equation of evolution for anyn:

dẊn

dT
5naE~T!. ~8!

The quantityXn is known once three quantities are given.
~i! Its coupling constantna.
~ii ! Its initial values ofXn andẊn at, say,T50. The initial

value of Xn is notedXn(0). It contributes via a prefacto
*0

nXp(0)dp to the structure function, and is usually fixed b
the large-scale injection mechanism. Similarily, we note t
Ẋn(0)5nẊ1(0), theinitial value of Ẋn , is also fixed by the
injection mechanism, i.e., the experimentalist.
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~iii ! The electric fieldE itself. This cannot be derived
from mere symmetry considerations, and should be ei
determined from experiments, or computed using ano
systematic theory. However, as we now show, an interes
conclusion can be reached regardless of the specific sha
E.

D. General scaling

Let us consider relation~8!. Using the initial conditions
and theX independence ofE, it can be integrated into:

Xn2Xn~0!5n@X12X1~0!#. ~9!

Integrating Eq.~9! with respect ton yields a relation between
reduced structure functions of ordern and 1:

lnS Sn~ l !

Sn~h! D5n2lnS S1~ l !

S1~h! D . ~10!

Such a result has an interesting consequence: the usual s
ture functions^udul un& obey a general scaling extendin
throughout the whole range of scale under the form

lnS ^udul un&

^udul u3&n/3D 5
n223n

p223p
lnS ^udul up&

^udul u3&p/3D . ~11!

Property~11! was already experimentally observed in turb
lence by Benziet al. @15#. It was named ‘‘general scaling’
because it is valid from the injection scale down to the sm
est scale resolved into the system, and thus generalize
self-similar properties of the structure functions in the in
tial range. Here we have shown that it stems directly fr
conservation along the scales of the generalized impuls
in the log-normal case. We do not actually know if this pro
erty still holds for statistics other than log-normal. Checki
this requires a nontrivial ‘‘general relativity’’ type of com
putation; see the discussion in our companion paper. Eve
this were not rigorously true, one expects to see Eq.~11!
hold only approximatively with a slightly different constan
if the turbulence is nearly log-normal. In any case, the g
eral scaling property provides a significant simplification
the determination of the reduced structure functions, beca
only the shape ofS1(l ) is needed. Below we show how t
compute this in a simple case.

III. DETERMINATION OF S1„l …

A. Basic equations

The general scaling property~11! means that variations o
the reduced structure functions are completely determine
the variations ofX1 in a fixed reference frame. These vari
tions can be found by solving the equations

dẊ1~T!

dT
5aE~T!. ~12!

The electric field itself is linked to the currentJ, via the
Maxwell equation@10#

]E

]T
52J. ~13!
er
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In a given experiment, physical conditions select the sh
of J, and then the shape of the structure functions via
~12!. The major challenge is now to relateJ andE to physi-
cal quantities characterizing an experiment, i.e., to find
closure relation complementing Maxwell’s Eq.~13!.

In the case whereX translation symmetry holds,E andJ
are functions ofT only. Thus the theorem of implicit func
tions implies that one can writeJ as a function ofE, i.e.,
J5J(E). In a perfectly scale invariant system, i.e., in infini
Reynolds number turbulence!, Ẋ1 is constant, andE is zero.
In the vicinity of the inertial range, or when the Reynold
number Re is large enough, the system is sufficiently clos
the scale-invariant situation, andE is small. Thus one can
expandJ as a function of the parameterE, a standard pro-
cedure in electricity@18#. This expansion is a perturbativ
development around the Re5` limit.

Usually, in this Re5` limit, the quantity which is devel-
oped is the structure function, or the scaling exponents
any case it is a development of the solutions. But bound
conditions onT ~i.e., upper and lower cutoffs on the scalel )
are rejected at infinity in the idealized Re5` limit, while
they are necessarily finite in a real, experiment at finite
This implies that the classical method suffers from two dra
backs:~i! since boundary conditions are qualitatively diffe
ent, the development in 1/Re is generally singular at 1
50; and~ii ! the solution found at finite Re has no reason
be the solution of a scale-symmetric equation.

Alternatively, we develop the equation itself instead
the solution. In that way we are insensitive to the prec
location of any precise scale which could appear, whet
cutoffs or crossovers. We do not have to assumea priori the
existence of an inertial range, of a Kolmogorov length, or
a large ratio between largest and smallest accessible sc
By construction, our development is~i! regular at 1/Re50,
and ~ii ! compatible with symmetry requirements. Moreove
we do not have yet to specify the precise functional dep
dence of our equations in 1/Re; this will be discussed bel

B. Ohmic case

When E is identically zero,J is also zero, as a conse
quence of Eq.~13!. Thus we now consider the leading ter

J5sE. ~14!

This is the linear, or ‘‘Ohmic,’’ case, ands is the analog of
a conductivity. In electricity, different material possess d
ferent ~or even nonlinear! conductivities: similarly, we can
expect different turbulent flow to be characterized by diffe
ent ‘‘conductivities,’’ and to belong to different classes
solutions, possibly not even linear. Of course, nothing f
bids nonlinear corrections to Eq.~14!. But we will see that
this dominant linear physics is rich enough, and is proba
representative of a wide variety of high-Re turbulent flow

The system of equations~12!–~14! is closed. We have to
introduce two integration constantsE05E(0) and Ẋ1(0)
which will lead the discussion. Resolution is simple:

E~T!5E0e2sT , ~15!
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TABLE I. Fits of various turbulent configurations following the procedure described in the text. The
parameters are, respectively,s, m, andaE0 /s, except in the case of stretched exponential where they

s50, Ẋ1(0), andaE0/2. Rl is the Reynolds number based on the Taylor microscale,R is the pseudo-
Reynolds number defined as the ratio of the integral scale to the Kolmogorov scale. References of da
tunnel@22#, turbulence in helium@23#, jet turbulence@24#, turbulence behind a cylinder@25#, and numerical
simulation@26#.

Experiment Rl R Solution First parameter Second parameter Third parame

Wind tunnel 2500 40000 0.8260.04 0.7660.02 217.860.9
Helium 2313 12157 0.7860.06 0.8660.02 215.461.7
Jet 800 1250 stretched exp. 0.1860.01 0 29.9360.13
Behind cylinder 470 714 degenerate 0 1.3760.14 20.1860.04
Simulation 335 85 0.5660.04 0.4360.05 29.7560.1
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Ẋ1~T!5Ẋ1~0!1
aE0

s
~12e2sT!,

X1~T!2X1~0!5Ẋ1~0!T1
aE0

s2
~e2sT211sT!.

Let us now discuss this solution of the Ohmic equatio
remember that it is expressed in log variables. See Eq.~4! for
their definition.

C. Ohmic solution

First of all, we want to link this solution with the usua
experimental observation of an ‘‘inertial range,’’ i.e., a ran
of scales where structure functions are approximately po
laws of the scale. In our log variables, this is an interval oT
whereX is linear inT. Does it exist at all?

The answer is of course yes. On the right-hand side of
~15c!, terms linear inT dominate higher-order terms
ue2sTu!1 or usTu!1. Thus there are two points in our dis
cussion, and two special cases are examined.

~i! As long asuTu!us21u, Eq.~15c! writesX1(T)2X1(0)
;Ẋ1(0)T up to T2 terms. Whens tends to zero, this rang
widens at the expense of the next one. Exactly whens50,
E5E0 is constant, and the solution is simply

X1~T!2X1~0!5Ẋ1~0!T1
aE0

2
T2. ~16!

Such a solution was also found using a normal form
proach by Dubrulle@7#. Only whenE is strictly zero does
this solution yield an exact power law.

~ii ! There is a well distinct linear range, withue2sTu!1,
at large scales, i.e.,T.s21 if s is positive@19#. Upwards,
the inertial range extends up to the ‘‘initial condition:’’ th
upper cutoff, usually the scale at which the experimenta
injects energy. We see in Eq.~15b! that the corresponding
exponent ism5Ẋ1(0)1aE0 /s for the reduced structure
function of order 1, andn2m for ordern.

Whens increases, this range widens at the expense of
preceding one. In the limits→`, Eqs.~15! reduce toE[0
and Ẋ15const, which is an exact power law.
;

er

q.

-

t

e

D. Physical interpretation

Clearly, the idealized case of an infinite Reynolds nu
ber, where structure functions are exact power laws of
scale, must be identified withE[0. However, that does no
set any constraints ons. Fits to experimental data~see Table
I! indicate low values ofs. This is compatible with physica
@8# and symmetry@7# arguments, which suggest that th
asymptotic behavior toward this idealized limit is of th
shapes;1/ln(Re). This would mean that we must identi
the inertial range with the rangeT.s21, and take the triple
limit where s21, E0, and the size of accessible scale ran
tends together to zero. If this were true, the dissipative ra
would have a width of order 2s21.

In the particular case where the exponentm50, we obtain
an especially interesting solution:

X1~T!2X1~0!5
aE0

s2
~e2sT21!. ~17!

It is a ‘‘stretched exponential’’ when expressed in real va
ablesl ,S:

Sn~ l !5Sn~h! exp Fn2aE0

~ l /h!2s21

s2 G . ~18!

This, then, is exactly the solution proposed in Ref.@20# on
the basis of experimental results. This solution was also
rived using a Lagrangian approach based on scale-invaria
symmetry by Castaing@8#, and using a normal form ap
proach by Dubrulle@7#. This solution is a true exponential i
s51, and becomes a power law in the limits21, E0→0. It
is a generic solution of the scale-symmetric equation, a
thus has a similar mathematical role, when the access
scale range is finite, as the celebrated power law plays w
cutoffs are rejected at infinity.

E. Local scale covariance

This interpretation becomes more exciting in the light
local symmetry requirements. As first discussed by Poch
@21#, local scale symmetry requires an invariance of t
structure function by arbitrary changes of scale resoluti
Dubrulle @7# pointed out that this amounts to symmetry u
der the transformation
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56 6439ANALOGY BETWEEN SCALE . . . . II. . . .
T→aT, ln~R!→a ln~R! ,

ln ^~dul !n&→a ln^~dul !n&, ~19!

wherea is a positive real number and lnR5ln(l 0 /h) is a
pseudo-Reynolds number, defined via the ratio of the in
tion scalel 0 to the Kolmogorov scaleh. This symmetry
imposes thatX1 /ln(R) is a function ofT/ ln(R) only. In the
Ohmic case, this is only possible provideds}1/ln(R), aE0

}1/ln(R), andẊ1(0) is independent ofR.
When this is satisfied, the stretched exponential@Eqs.~17!

and ~18!# tends smoothly toward the perfect self-simil
R5` solution, as is often discussed in literature devoted
turbulence theory. However, surprisingly, the scaling ex
nents do not tend toward their Kolmogorov expressio
zn5n/3. SinceẊ1(0)52aE0 /s keeps its finite value, the
log-normal character subsists in the limit of infinite Reyno
number.

In the more general case~15!, however, it remains pos
sible to tend continuously toward the Kolmogorov solution
and only ifẊ1(0)50 ands andaE0 tend together to zero to
the same order in Reynolds number.

IV. ANALYSIS OF TURBULENT DATA

A. Fitting experimental data

To investigate the domain of validity of the ohmic a
proximation, we computed the functionX1(T) in various tur-
bulent configurations, at various Reynolds numbers. The
lowing procedure was used.

~i! Check that the general scaling~11! holds.
~ii ! In case it holds, compute the flatness functi

F5 ln(^dul
4 &/^dul

2 &2). Because of the general scaling pro
erty, this function is just eight times the functionX1(T).

~iii ! Define a ‘‘log scaleTi typical of the inertial range’’
as the location whered ln^dul

3 &/d ln l 51.

~iv! Find the local scaling exponentm5 1
8 dF/dT at

T5Ti .
~v! ComputeF/8m, a normalized version ofX1 which

facilitates comparisons between different configurations.
~vi! Fit the obtained result by the Ohmic solution~15!

using three parameters:s,m5Ẋ1(0)1aE0 /s, andaE0 /s2.
~vi! If the fitted value ofm or s is much smaller than 1

another fit is performed setting this parameter to zero,
refitting the two other parameters via the stretched expon
tial ~17! or the degenerate~16! solution.

~vii ! Keep the solution which yields a better fit to the da
~according to ax2 test!.

This procedure was applied to the five different sets
data made available to us through the courtesy of their
thors. The general scaling property was found to hold in
five sets. Results of the fits are displayed in Table I and F
1. In this preliminary investigation, we can make at least t
comments: First, the Ohmic approximation can be used
describe a large variety of turbulent configurations. Seco
the parameters entering into the Ohmic solution seem to
pend on the turbulent configuration and/or the pseu
Reynolds number. They could then be used to ‘‘classif
different turbulent flows. A more detailed exploration of th
classification is in preparation@27#, studying variations of the
c-

o
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l-

d
n-

f
u-
ll
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o
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d,
e-
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’

parameters with the Reynolds number in a given configu
tion.

B. Computation of du0

To compute the complete structure functions, one ne
the behavior of the nonuniversal part, namely, the ‘‘mo
probable’’ eventdul

0 . We can use an idea of Benziet al.
@28# and use the so-called ‘‘Kolmogorov45 law’’ derived
from the Navier-Stokes equation, wheree is the energy dis-
sipation rate andn is the viscosity,

^~dul !3&52 4
5 el 16n] l ^~dul !2&, ~20!

and the relation derived from the log-normal statistics,

^udul un&5~dul
0 !nen2X11 f n, ~21!

where f n is a scale independent integration constant. Eq
tions ~20! and~21! deal, respectively, with algebraic and a
solute values structure functions, which for oddn are of
course different. It is not clear in general whether they ha
the same behavior. For instance, Stolovitzky and Sreeniva
@29# showed differences at largen. However, it seems that
for n53, both structure functions behave almost identica
up to a proportional constant. This has been checked,
experimentally in three-dimensional~3D! turbulence by
Benzi, Ciliberto, and Chavarria@30#, and numerically in 2D
turbulence by Babiano, Dubrulle, and Frick@31#. To com-
putedul

0 from Eq. ~20!, we then only need the value of th
proportionality constant between̂(dul )3& and ^udul u3&,
which can be computed experimentally.

V. CONCLUSION

In the present work, we used the idea that the behavio
the structure functions could be divided into two distin
parts: a nonuniversal part, depending on the shape of
most probable events, and a universal part, characterize
reduced structure functions. Previous papers@4,5# classified
the possible variations of the scaling exponent with theorder
of the moment. This classification covers the set of infinite
divisible laws, and includes as special cases the log-nor
model @9,8#, the phenomenological model of She-Leveq
@11#, the thermodynamical model of Castaing@32#, the b
model @33#, and the Kolmogorov solution@9#.

Recent experimental results seem to indicate that tur
lence is characterized by log normal@3#, or very near log-
normal @14#, statistics. Therefore, in the present paper,
voted to the variation of the scaling exponents with thescale,
we apply our unifying formalism only on this log-norma
statistics. Our conclusions can be summarized as follows

~i! The nonuniversal part can be set aside as a first
~while the universal part is determined!, then finally com-
puted from the Kolmogorov45 law.

~ii ! We have tried to determine the universal contributi
using only symmetry arguments, and a formalism with t
same symmetry as electricity~Sec. II B and the Appendix!.

~iii ! In particular, the general scaling of the reduced str
ture functions observed in turbulence by Benziet al. @15# can
be explained by the conservation along the scale of a gen
impulsion ~Secs. II D and II C!. This conservation law is



’’

6440 56B. DUBRULLE AND F. GRANER
FIG. 1. Comparison between the functionX1(T) computed from real data~filled circles! and a fit~dotted line! to an Ohmic solution
obtained using the procedure described in the text.X1 is the logarithm of a reduced~adimensioned! structure function, andT is a
nondimensional log scale, defined as the logarithm of the scalel divided by the Kolmogorov scaleh. Our most general solution~15c! fits
well data of turbulence in a wind tunnel~a!, courtesy of Y. Gagne; in a helium tank with counter-rotating cylinders~b!, courtesy of F. Belin,
P. Tabeling, and H. Willaime; and in numerical simulations of Navier-Stokes equations via spectral method~c!, courtesy of M. Meneguzzi.
The ‘‘stretched exponential’’ solution~17! provides the best fit to data of a turbulent jet~d!, courtesy of S. Ciliberto. The ‘‘degenerate
solution ~16!, i.e., with a zero ‘‘conductivity’’s, provides the best fit to data of turbulence behind a cylinder~e!, courtesy of S. Ciliberto.
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associated with the scale symmetry of amplitude fluct
tions. It therefore can be seen as a generalization of the
ergy conservation which is the central hypothesis of class
phenomenological theories derived from the Kolmogor
1941 theory@9#.

~iv! In such case, the reduced structure functions dep
only on one function of the scale. This function could
principle be computed; the pertinent shape of the equation
established in Sec. III A.

~v! Section III A and Eq.~14! explain the only possibility
of establishing scale-symmetric equations through a reg
perturbation development around the limit of infinite Re
nolds number.
-
n-
al
v

nd
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ar

~vi! Solutions of these scale-invariant equations, but w
finite boundary conditions, play the same generic role
power laws do for boundary conditions rejected at infini
As an example, a solution is explicitly computed in the line
~or ‘‘ Ohmic’’ ! closure~Sec. III B!: we find a stretched ex
ponential with@Eq. ~15c!# or without @Eq. ~18!# a power-law
prefactor.

~vii ! The corresponding solutions potentially describe
large variety of turbulent flows, from numerical simulation
wind tunnel turbulence, including flow past a cylinder, j
turbulence, or turbulence in helium. Whether other types
turbulence also follow the Ohmic behavior is an open qu
tion.
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APPENDIX: POSSIBLE LAGRANGIAN
IN THE LOG-POISSON CASE

This appendix uses the results and notations of our c
panion paper to determine the possible shapes of Lagran
formalisms compatible with scale-symmetry requiremen
In the present paper, we developed only the simplest c
namely, the log-normal statistics. However, our formalis
applies equally well to other statistics. In this appendix,
examine the case of log-Poisson statistics@2#.

In this case the large-scale–small-scale symmetry bre
ing parameterL51, and there is only one codimension
the most intermittent structure, which is finite and equal
C25C/2. The similarity factor isG(Ẋ)5(12Ẋ/C2)21/2. A
particle motion is determined by the Lagrangian

L52
MC2

G~Ẋ!
1eA2eFS 12

Ẋ

C
D . ~A1!

This is an analog of electromagnetism reduced to a bidim
sional space-time (T,X), i.e., where only a scalar electri
as

s.
k
F.
.
,
y

-
ian
.
e,

e

k-

o

n-

field E and no magnetic field are allowed. Here,e andM are
the analog to the charge and the mass of the particle, res
tively, so that the dynamics of the particle only depends
the scalar coupling constanta5e/MC. The fieldE derives
from the potentialsA andF via

E52]XF2]CTF1]XA. ~A2!

Note thata, and more surprisinglyE, are scalar, independen
of the referential.

There are an energy and a generalized impulsion ass
ated to this Lagrangian:

P5]L/]Ẋ5GMC1eF/C,
~A3!

E5GMC2F12
Ẋ

C
G1e@F2A#.

Whenever the symmetry by translation alongX holds, one
can set]X50 in Eqs.~A2! and~A3!. The generalized impul-
sionP is conserved along the scales

]TP50, ~A4!

i.e., the dynamics is equivalently given by the Eule
Lagrange equation

MC
dG~Ẋ!

dT
5

d~P2eF/C!

dT
5eE, ~A5!

which is more simply written as

dG5aE dT.
-
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